
Package: ggarrow (via r-universe)
October 4, 2024

Title Arrows for 'ggplot2'

Version 0.1.0.9000

Description A 'ggplot2' extension that adds specialised arrow geometry
layers. It offers more arrow options than the standard 'grid'
arrows that are built-in many line-based geom layers.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Depends ggplot2 (>= 3.5.0)

Imports cli, grid, polyclip, rlang (>= 1.1.0), scales, utils, vctrs

Suggests covr, knitr, rmarkdown, testthat (>= 3.0.0), vdiffr

Config/testthat/edition 3

VignetteBuilder knitr

URL https://teunbrand.github.io/ggarrow/,

https://github.com/teunbrand/ggarrow

BugReports https://github.com/teunbrand/ggarrow/issues

Repository https://teunbrand.r-universe.dev

RemoteUrl https://github.com/teunbrand/ggarrow

RemoteRef HEAD

RemoteSha 77736db06914753703ea4b4d4b65c913126b672e

Contents
annotate_arrow . 2
arrow_ornaments . 4
continuous_arrow_scales . 5
discrete_arrow_scales . 8
draw_key_arrow . 10

1

https://teunbrand.github.io/ggarrow/
https://github.com/teunbrand/ggarrow
https://github.com/teunbrand/ggarrow/issues

2 annotate_arrow

element_arrow . 11
GeomArrow . 14
geom_arrow . 14
geom_arrow_chain . 18
geom_arrow_curve . 22
geom_arrow_segment . 26
grob_arrow . 31
grob_arrow_curve . 33
scale_resect . 35
whirlpool . 39

Index 40

annotate_arrow Arrow annotation layer

Description

This function mirrors annotate() with the following changes. First, the geom argument is pre-
populated with "arrow". Second, several parameters from ggarrow are special-cased, because no
warning needs to be issued when they don’t have length 1.

Usage

annotate_arrow(
geom = "arrow",
x = NULL,
y = NULL,
xmin = NULL,
xmax = NULL,
ymin = NULL,
ymax = NULL,
xend = NULL,
yend = NULL,
...,
na.rm = FALSE

)

Arguments

geom name of geom to use for annotation
x, y, xmin, ymin, xmax, ymax, xend, yend

Positioning aesthetics. At least one of these must be specified.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

annotate_arrow 3

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

Value

A <Layer> ggproto object that can be added to a plot.

See Also

Other arrow geoms: geom_arrow(), geom_arrow_chain(), geom_arrow_curve(), geom_arrow_segment()

Examples

Annotate an arrow
ggplot() +

annotate_arrow(
x = c(0, 1), y = c(0, 1),
arrow_head = arrow_head_line(),
arrow_fins = arrow_fins_line(),
length_head = unit(5, "mm"),
length_fins = unit(5, "mm")

)

Still works with other geoms as well
ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point() +

annotate_arrow("text", x = 4, y = 25, label = "Some text")

4 arrow_ornaments

arrow_ornaments Arrow ornament functions

Description

There are two types of arrow ornament functions: functions for arrow heads, and functions for
arrow fins. The heads and fins can be used interchangeably, but the name makes it clearer what is
suitable.

Usage

arrow_head_wings(offset = 20, inset = 30)

arrow_fins_feather(indent = 0.3, outdent = indent, height = 0.5)

arrow_head_line(angle = 30, lineend = "butt")

arrow_fins_line(angle = 30, lineend = "butt")

arrow_cup(lineend = "round", angle = NULL)

arrow_head_minimal(angle = 45)

arrow_fins_minimal(angle = 45)

Arguments

offset, angle A numeric(1) giving an angle in degrees for the angle between the line and tip.

inset A numeric(1) giving an angle in degrees for the angle inside the tip of the
arrowhead.

indent, outdent A numeric(1) giving the fraction of the feather feather length to offset the notch
and the end respectively.

height A numeric(1) ratio between the length of the feathers and the height of the
feathers.

lineend A character(1), one of "butt", "square", "round" or "parallel". For
arrow_cup(), only "butt" and "round" are allowed.

Details

The convention for these functions is that the arrow shaft is fused to the ornament at the (0,0) point
and the ornaments ends at the (1,0) point.

Value

A <matrix[n, 2]> with x and y columns describing a polygon. It has a notch_angle attribute
that is used fusing the fins/head to the shaft of the arrow. They can be given to an arrow plotting
function.

continuous_arrow_scales 5

Functions

• arrow_head_wings(): Places two triangles at either side of the line. Let ABC be a triangle,
where A is at the end of the line, B is on the line and C is the arrow wingtip. Then offset is
the angle at corner A and inset is the angle at corner C.

• arrow_fins_feather(): Places trapezoids at either side of the line. Let ABCD be a quadri-
lateral shape, where A is at the end of the line, B is on the line, and CD is parallel to AB,
but offset from the line. Then, indent is the distance along the line between A and D and
outdent is the distance along the line between B and C.

• arrow_head_line(): A line as an arrow head.

• arrow_fins_line(): A line as an arrow fin.

• arrow_cup(): A curved line some fixed distance away from the point to be resected, resem-
bling a ’cup’ shape.

• arrow_head_minimal(): This is a ’fake’ arrow head who in practice doesn’t draw anything,
but sets the notch_angle attribute such that the arrow shaft is whittled into a triangular point.

• arrow_fins_minimal(): This is a ’fake’ arrow head who in practise doesn’t draw anything,
but sets the notch_angle attribute such that a triangle is taken out of the arrow shaft.

Examples

Plotting winged head
plot(c(-0.5, 1), c(-0.6, 0.6), type = "n")
polygon(arrow_head_wings(), col = "gray")

Plotting feather fins
plot(c(0, 1), c(-0.25, 0.25), type = "n")
polygon(arrow_fins_feather(), col = "gray")

continuous_arrow_scales

Continuous arrow scales

Description

These scales can map continuous input to an argument of an arrow generator. The arrow head,
arrow fins and middle arrows have separate scales and by default use different generators.

Usage

scale_arrow_head_continuous(
name = waiver(),
breaks = waiver(),
labels = waiver(),
limits = NULL,
generator = arrow_head_wings,
map_arg = "offset",

6 continuous_arrow_scales

other_args = list(),
range = c(10, 80),
transform = "identity",
guide = "legend"

)

scale_arrow_fins_continuous(
name = waiver(),
breaks = waiver(),
labels = waiver(),
limits = NULL,
generator = arrow_fins_feather,
map_arg = "indent",
other_args = list(),
range = c(0, 1),
transform = "identity",
guide = "legend"

)

scale_arrow_mid_continuous(
name = waiver(),
breaks = waiver(),
labels = waiver(),
limits = NULL,
generator = arrow_head_wings,
map_arg = "offset",
other_args = list(),
range = c(10, 80),
transform = "identity",
guide = "legend"

)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

breaks One of:

• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output (e.g.,

a function returned by scales::extended_breaks()). Note that for po-
sition scales, limits are provided after scale expansion. Also accepts rlang
lambda function notation.

labels One of:

• NULL for no labels

continuous_arrow_scales 7

• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plotmath

for details.
• A function that takes the breaks as input and returns labels as output. Also

accepts rlang lambda function notation.

limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

generator A <function> that can create an arrow ornament, such as ornamentation func-
tions.

map_arg An argument of the generator function to map input to.

other_args Additional, fixed, arguments to pass to the generator.

range The range that generator’s map_arg may take

transform For continuous scales, the name of a transformation object or the object itself.
Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms",
"identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability",
"probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".
A transformation object bundles together a transform, its inverse, and methods
for generating breaks and labels. Transformation objects are defined in the scales
package, and are called transform_<name>. If transformations require argu-
ments, you can call them from the scales package, e.g. scales::transform_boxcox(p
= 2). You can create your own transformation with scales::new_transform().

guide A function used to create a guide or its name. See guides() for more informa-
tion.

Value

A <Scale> that can be added to a plot.

Examples

base <- ggplot(whirlpool(5), aes(x, y, colour = group)) +
coord_fixed()

p <- base +
geom_arrow(

aes(arrow_head = as.integer(group)),
length_head = 10

)

8 discrete_arrow_scales

A typical scale
p + scale_arrow_head_continuous()

Change other arguments passed to the generator
p + scale_arrow_head_continuous(other_args = list(inset = 90))

Using another argument of the generator
p + scale_arrow_head_continuous(name = "inset", map_arg = "inset")

Using a different generator
p + scale_arrow_head_continuous(

generator = arrow_head_line,
map_arg = "angle",
range = c(20, 80)

)

The same goes for other arrow aesthetics, but the `generator()` might
differ.
base +

geom_arrow(
aes(arrow_fins = as.integer(group), arrow_mid = as.integer(group)),
length_fins = 10, arrow_head = NULL

) +
scale_arrow_fins_continuous(map_arg = "height", range = c(0.1, 1)) +
scale_arrow_mid_continuous(map_arg = "inset")

discrete_arrow_scales Discrete arrow scales

Description

These scales can map discrete input to various sorts of arrow shapes. The arrow head, arrow fins
and middle arrows have separate scales.

Usage

scale_arrow_head_discrete(values = NULL, aesthetics = "arrow_head", ...)

scale_arrow_fins_discrete(values = NULL, aesthetics = "arrow_fins", ...)

scale_arrow_mid_discrete(values = NULL, aesthetics = "arrow_mid", ...)

Arguments

values One of the following:

• A <character> vector of arrow function names, without the arrow_-prefix,
such as "head_wings" or "fins_line".

discrete_arrow_scales 9

• An unnested <list>, possibly mixed <list>, containing any of the follow-
ing elements:

– A single <character> as described above.
– A <function> that when called without any arguments produces a 2-

column <matrix> that can be used as an arrow.
– A 2-column <matrix> giving a polygon to use as an arrow.

• NULL, which defaults to a built-in palette with a maximum of 3 arrows.

aesthetics The names of the aesthetics that this scale works with

... Arguments passed on to ggplot2::discrete_scale

scale_name [Deprecated] The name of the scale that should be used for error
messages associated with this scale.

palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take (e.g.,
scales::pal_hue()).

name The name of the scale. Used as the axis or legend title. If waiver(), the
default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
expand For position scales, a vector of range expansion constants used to add

some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

10 draw_key_arrow

na.translate Unlike continuous scales, discrete scales can easily show miss-
ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what aesthetic value should the missing
values be displayed as? Does not apply to position scales where NA is al-
ways placed at the far right.

drop Should unused factor levels be omitted from the scale? The default, TRUE,
uses the levels that appear in the data; FALSE includes the levels in the
factor. Please note that to display every level in a legend, the layer should
use show.legend = TRUE.

guide A function used to create a guide or its name. See guides() for more
information.

position For position scales, The position of the axis. left or right for y
axes, top or bottom for x axes.

call The call used to construct the scale for reporting messages.
super The super class to use for the constructed scale

Value

A <Scale> that can be added to a plot.

Examples

A standard arrow plot
p <- ggplot(whirlpool(5), aes(x, y, colour = group)) +

geom_arrow(length_head = 10, length_fins = 10, arrow_head = NULL)

A character vector naming arrow shapes as arrow head scale
p + aes(arrow_head = group) +

scale_arrow_head_discrete(values = c(
"head_wings", "head_line", "head_minimal", "fins_line", "fins_feather"

))

A mixed list with arrows as arrow fins scale
p + aes(arrow_fins = group) +

scale_arrow_fins_discrete(values = list(
"head_wings", # Using a character
arrow_head_wings(20, 100), # Using an arrow function
NULL, # No arrow
matrix(c(1, 0, 0, 0, 0.5, -0.5), ncol = 2), # A matrix
"fins_feather"

))

draw_key_arrow Legend key glyph for arrows

Description

Like any legend key glyphs, this key can be used to display arrows in a legend.

element_arrow 11

Usage

draw_key_arrow(data, params, size)

Arguments

data A single row data frame containing the scaled aesthetics to display in this key

params A list of additional parameters supplied to the geom.

size Width and height of key in mm.

Value

An <arrow_path> grob

Examples

ggplot(mpg, aes(displ, colour = factor(cyl))) +
geom_density(key_glyph = draw_key_arrow)

element_arrow Arrow theme element

Description

Using the theme system, draws arrows in places where element_line() are valid theme elements.
Note that the default use of element_arrow() does not actually draw an arrow unless one of the
arrow_ arguments is set.

Usage

element_arrow(
colour = NULL,
linewidth = NULL,
linewidth_head = NULL,
linewidth_fins = NULL,
stroke_colour = NULL,
stroke_width = NULL,
arrow_head = NULL,
arrow_fins = NULL,
arrow_mid = NULL,
length = NULL,
length_head = NULL,
length_fins = NULL,
length_mid = NULL,
resect = NULL,
resect_head = NULL,
resect_fins = NULL,
justify = NULL,

12 element_arrow

force_arrow = NULL,
mid_place = NULL,
lineend = NULL,
linejoin = NULL,
linemitre = NULL,
inherit.blank = FALSE

)

Arguments

colour The colour of the arrow.
linewidth, linewidth_head, linewidth_fins

The width of the arrow shaft in millimetres. linewidth is the default width,
whereas linewidth_head and linewidth_fins can set non-uniform width at
the end and start of the line respectively.

stroke_colour The colour of the arrow outline.

stroke_width The width of the arrow outlien.
arrow_head, arrow_fins, arrow_mid

Arrow ornament shapes for the arrow head, arrow fins and middle arrows re-
spectively. Can be one of the following: * NULL for not drawing the orna-
ment. * A <character> of length 1 naming an ornament constructor without
the "arrow_"-prefix, like "head_wings" or "fins_feather". * A 2-column
matrix, such as those built by the ornament constructors.

length, length_head, length_fins, length_mid
Determines the size of the arrow ornaments. length sets the default length,
whereas length_head, length_fins and length_mid set the lengths of the ar-
row head, arrow fins or middle arrows respectively. Can be one of the following:

• A <numeric> to set the ornament size relative to the linewidth{_*} set-
tings.

• A <unit> to control the ornament size in an absolute manner. Behaviour of
relative units such as "npc" or "null" is undefined.

resect, resect_head, resect_fins
A numeric(1) denoting millimetres or <unit> to set an offset from the start and
end points of the line such that the arrow is shortened. resect sets the default
offset, whereas resect_head and resect_fins sets these offsets for the end-
and start-point respectively.

justify A numeric(1) between [0-1] to control where the arrow ornaments should be
drawn relative to the (resected) path’s endpoints. A value of 0 (default) sets the
ornament’s tips at the path’s endpoint, whereas a value of 1 sets the ornament’s
base at the path’s endpoint.

force_arrow A logical(1) which if TRUE, will draw arrow ornaments even when the path’s
length is shorter than the arrow heads and fins. If FALSE, such ornaments will be
dropped.

mid_place Sets the location of middle (interior) ornaments when arrow_mid has been pro-
vided. Can be one of the following:

element_arrow 13

• A <numeric> vector with values between [0-1] to set middle ornaments at
relative positions along the arc-length of the (resected) path.

• A <unit> to fill a path with ornaments with th provided unit as spacing
between one ornament to the next.

lineend A character(1) setting the style of the line ends without ornaments. Can be
"round", "butt" or "square".

linejoin A character(1) setting the style of path corners. Can be "round", "mitre" or
"bevel".

linemitre A numeric(1) greater than 1 setting the path’s mitre limits.

inherit.blank A logical(1) indicating if this element should inherit the existence of an <element_blank>
among its parents. If TRUE, the existence of a blank element among its parents
will cause this element to be blank as well. If FALSE, any blank parent element
will be ignored when calculating final element state.

Value

An <element_arrow> object that can replace <element_line> objects in theme().

Examples

Setting a bunch of arrows all over the theme
ggplot(whirlpool(5), aes(x, y, group = group)) +

geom_path() +
theme(
Proper arrow with variable width for x-axis line
axis.line.x = element_arrow(

arrow_head = "head_wings", linewidth_head = 2, linewidth_fins = 0
),
Just a variable width line for the y-axis line
axis.line.y = element_arrow(linewidth_head = 0, linewidth_fins = 5,

lineend = "round"),
Arrows for the y-axis ticks
axis.ticks.y = element_arrow(arrow_fins = arrow_head_line(angle = 45)),
Variable width lines for the x-axis ticks
axis.ticks.x = element_arrow(linewidth_head = 3, linewidth_fins = 0),
axis.ticks.length = unit(0.5, 'cm'),
Arrows for major panel grid
panel.grid.major = element_arrow(

arrow_head = "head_wings", arrow_fins = "fins_feather", length = 10
),
Shortened lines for the minor panel grid
panel.grid.minor = element_arrow(resect = 20)

)

14 geom_arrow

GeomArrow ggarrow extensions to ggplot2

Description

ggarrow relieas on the extension mechanism of ggplot2 through ggproto class objects, that allow
for cross-package inheritance of geoms. These objects can be ignored by users for the purpose of
making plots, since interacting with these objects is preferred through various geom_*() functions.

geom_arrow Arrows

Description

This arrow geom can be used to draw lines adorned with arrow heads or fins. It is useful as an
annotation layer to point to or away from other things on the plot. An arrow typically consists of
three parts: the arrowhead, the shaft and fins. This geom places arrow heads at the end of a line and
fins at the beginning of a line.

Usage

geom_arrow(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
arrow_head = arrow_head_wings(),
arrow_fins = NULL,
arrow_mid = NULL,
length = 4,
length_head = NULL,
length_fins = NULL,
length_mid = NULL,
justify = 0,
force_arrow = FALSE,
mid_place = 0.5,
resect = 0,
resect_head = NULL,
resect_fins = NULL,
lineend = "butt",
linejoin = "round",
linemitre = 10,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_arrow 15

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

16 geom_arrow

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

arrow_head, arrow_fins, arrow_mid
A function call to one of the arrow ornament functions that can determine the
shape of the arrow head, fins or middle (interior) arrows.

length, length_head, length_fins, length_mid
Determines the size of the arrow ornaments. length sets the default length,
whereas length_head, length_fins and length_mid set the lengths of the ar-
row head, arrow fins or middle arrows respectively. Can be one of the following:

• A <numeric> to set the ornament size relative to the linewidth{_*} set-
tings.

• A <unit> to control the ornament size in an absolute manner. Behaviour of
relative units such as "npc" or "null" is undefined.

justify A numeric(1) between [0-1] to control where the arrows should be drawn rel-
ative to the path’s endpoints. A value of 0 sets the arrow’s tips at the path’s end,
whereas a value of 1 sets the arrow’s base at the path’s end.

force_arrow A logical(1) which, if TRUE an arrow will be drawn even when the length
of the arrow is shorter than the arrow heads and fins. If FALSE, will drop such
arrows.

mid_place Sets the location of middle (interior) arrows, when applicable. Can be one of the
following:

A numeric vector with values between [0-1] to set middle arrows at relative
positions along the arc-length of a path.

A <unit> to fill a path with arrows with the provided unit as distance between
one arrow to the next.

resect, resect_head, resect_fins
A numeric(1) denoting millimetres or <unit> to shorten the arrow. resect_head
shortens the arrow from the arrow head side, whereas resect_fins shortens the
arrow from the fins side. Both inherit from resect.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

geom_arrow 17

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

A <Layer> ggproto object that can be added to a plot.

Aesthetics

geom_arrow() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• arrow_fins

• arrow_head

• arrow_mid

• colour

• group

• linetype

• linewidth

• resect_fins

• resect_head

• stroke_colour

• stroke_width

Learn more about setting these aesthetics in vignette("ggplot2-specs").

See Also

Other arrow geoms: annotate_arrow(), geom_arrow_chain(), geom_arrow_curve(), geom_arrow_segment()

Examples

Setting up a plot
p <- ggplot(whirlpool(), aes(x, y, colour = group)) +

coord_equal()

A standard arrow
p + geom_arrow()

Arrows can have varying linewidths

18 geom_arrow_chain

p + geom_arrow(aes(linewidth = arc))

You can use `length_head` to decouple arrow-head size from linewidth
p + geom_arrow(aes(linewidth = arc), length_head = unit(10, "mm"))

The arrow head shape can be controlled with the `arrow_head` argument
p + geom_arrow(arrow_head = arrow_head_line(), length_head = unit(10, "mm"))

This works similarly for the arrow fins
p + geom_arrow(

arrow_fins = arrow_fins_feather(),
length_fins = unit(7, "mm")

)

geom_arrow_chain Arrow chains

Description

An arrow chains connects a set of coordinates with a sequence of arrows. The geom_arrow_chain()
function can be useful to connect observations in a directed manner.

Usage

geom_arrow_chain(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
arrow_head = arrow_head_wings(),
arrow_fins = NULL,
arrow_mid = NULL,
length = 4,
length_head = NULL,
length_fins = NULL,
length_mid = NULL,
justify = 0,
force_arrow = FALSE,
mid_place = 0.5,
resect = 1,
resect_head = NULL,
resect_fins = NULL,
lineend = "butt",
linejoin = "round",
linemitre = 10,
na.rm = FALSE,
show.legend = NA,

geom_arrow_chain 19

inherit.aes = TRUE
)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is

20 geom_arrow_chain

technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

arrow_head, arrow_fins, arrow_mid
A function call to one of the arrow ornament functions that can determine the
shape of the arrow head, fins or middle (interior) arrows.

length, length_head, length_fins, length_mid
Determines the size of the arrow ornaments. length sets the default length,
whereas length_head, length_fins and length_mid set the lengths of the ar-
row head, arrow fins or middle arrows respectively. Can be one of the following:

• A <numeric> to set the ornament size relative to the linewidth{_*} set-
tings.

• A <unit> to control the ornament size in an absolute manner. Behaviour of
relative units such as "npc" or "null" is undefined.

justify A numeric(1) between [0-1] to control where the arrows should be drawn rel-
ative to the path’s endpoints. A value of 0 sets the arrow’s tips at the path’s end,
whereas a value of 1 sets the arrow’s base at the path’s end.

force_arrow A logical(1) which, if TRUE an arrow will be drawn even when the length
of the arrow is shorter than the arrow heads and fins. If FALSE, will drop such
arrows.

mid_place Sets the location of middle (interior) arrows, when applicable. Can be one of the
following:

A numeric vector with values between [0-1] to set middle arrows at relative
positions along the arc-length of a path.

A <unit> to fill a path with arrows with the provided unit as distance between
one arrow to the next.

resect, resect_head, resect_fins
A numeric(1) denoting millimetres or <unit> to shorten the arrow. resect_head
shortens the arrow from the arrow head side, whereas resect_fins shortens the
arrow from the fins side. Both inherit from resect.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

geom_arrow_chain 21

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

A <Layer> ggproto object that can be added to a plot.

Aesthetics

geom_arrow_segment() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• xend or yend

• alpha

• arrow_fins

• arrow_head

• arrow_mid

• colour

• group

• linetype

• linewidth

• linewidth_fins

• linewidth_head

• resect_fins

• resect_head

• stroke_colour

• stroke_width

The linewidth_fins and linewidth_head inherit from linewidth. They can be used to seper-
ately control the start- and end-width.

Learn more about setting these aesthetics in vignette("ggplot2-specs").

See Also

Other arrow geoms: annotate_arrow(), geom_arrow(), geom_arrow_curve(), geom_arrow_segment()

22 geom_arrow_curve

Examples

Setup dummy data
t <- seq(0, 2 * pi, length.out = 11)
l <- rep(c(1, 0.4), length.out = 11)

df <- data.frame(
x = cos(t) * l,
y = sin(t) * l,
size = l + 0.4

)

p <- ggplot(df, aes(x, y, size = size)) +
geom_point(colour = 2) +
coord_equal()

An arrow chains adapts to the `size` aesthetic to go nicely with points
p + geom_arrow_chain()

Without arrowhead, it is similar to a `type = 'b'` base R plot
p + geom_arrow_chain(arrow_head = NULL)

To widen the gap, one can increase the `resect` parameter
p + geom_arrow_chain(resect = 5)

To ignore the points, set `resect` and `size` to 0
p + geom_arrow_chain(size = 0, resect = 0)

Linewidths will be interpolated across arrows
p + geom_arrow_chain(aes(linewidth = seq_along(x)))

Alternatively, we can set them seperately for starts and ends
p + geom_arrow_chain(linewidth_fins = 0, linewidth_head = 3)

geom_arrow_curve Curves with arrows

Description

This arrow geom can be used to draw curves from one point to oneanother with arrow heads or fins.

Usage

geom_arrow_curve(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
curvature = 0.5,

geom_arrow_curve 23

angle = 90,
ncp = 5,
arrow_head = arrow_head_wings(),
arrow_fins = NULL,
arrow_mid = NULL,
length = 4,
length_head = NULL,
length_fins = NULL,
length_mid = NULL,
justify = 0,
force_arrow = FALSE,
mid_place = 0.5,
resect = 0,
resect_head = NULL,
resect_fins = NULL,
lineend = "butt",
linejoin = "round",
linemitre = 10,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

24 geom_arrow_curve

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

curvature A numeric value giving the amount of curvature. Negative values produce left-
hand curves, positive values produce right-hand curves, and zero produces a
straight line.

angle A numeric value between 0 and 180, giving an amount to skew the control points
of the curve. Values less than 90 skew the curve towards the start point and
values greater than 90 skew the curve towards the end point.

ncp The number of control points used to draw the curve. More control points creates
a smoother curve.

arrow_head, arrow_fins, arrow_mid
A function call to one of the arrow ornament functions that can determine the
shape of the arrow head, fins or middle (interior) arrows.

length, length_head, length_fins, length_mid
Determines the size of the arrow ornaments. length sets the default length,
whereas length_head, length_fins and length_mid set the lengths of the ar-
row head, arrow fins or middle arrows respectively. Can be one of the following:

geom_arrow_curve 25

• A <numeric> to set the ornament size relative to the linewidth{_*} set-
tings.

• A <unit> to control the ornament size in an absolute manner. Behaviour of
relative units such as "npc" or "null" is undefined.

justify A numeric(1) between [0-1] to control where the arrows should be drawn rel-
ative to the path’s endpoints. A value of 0 sets the arrow’s tips at the path’s end,
whereas a value of 1 sets the arrow’s base at the path’s end.

force_arrow A logical(1) which, if TRUE an arrow will be drawn even when the length
of the arrow is shorter than the arrow heads and fins. If FALSE, will drop such
arrows.

mid_place Sets the location of middle (interior) arrows, when applicable. Can be one of the
following:

A numeric vector with values between [0-1] to set middle arrows at relative
positions along the arc-length of a path.

A <unit> to fill a path with arrows with the provided unit as distance between
one arrow to the next.

resect, resect_head, resect_fins
A numeric(1) denoting millimetres or <unit> to shorten the arrow. resect_head
shortens the arrow from the arrow head side, whereas resect_fins shortens the
arrow from the fins side. Both inherit from resect.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

A <Layer> ggproto object that can be added to a plot.

Aesthetics

geom_arrow() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• arrow_fins

• arrow_head

26 geom_arrow_segment

• arrow_mid

• colour

• group

• linetype

• linewidth

• resect_fins

• resect_head

• stroke_colour

• stroke_width

Learn more about setting these aesthetics in vignette("ggplot2-specs").

See Also

Other arrow geoms: annotate_arrow(), geom_arrow(), geom_arrow_chain(), geom_arrow_segment()

Examples

curve_data <- data.frame(
x1 = c(2.62, 1.835),
x2 = c(3.57, 5.250),
y1 = c(21.0, 33.9),
y2 = c(15.0, 10.4),
group = c("A", "B")

)

ggplot(mtcars, aes(wt, mpg)) +
geom_point() +
geom_arrow_curve(
aes(x = x1, y = y1, xend = x2, yend = y2,

colour = group, arrow_head = group),
data = curve_data,
curvature = -0.2, length_head = 10

)

geom_arrow_segment Arrow segments

Description

geom_arrow_segment() draws a straight arrow between points (x, y) and (xend, yend). In contrast
to geom_segment(), the xend and yend aesthetics default to x and y respectively, so only one of
xend and yend is required.

geom_arrow_segment 27

Usage

geom_arrow_segment(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
arrow_head = arrow_head_wings(),
arrow_fins = NULL,
arrow_mid = NULL,
length = 4,
length_head = NULL,
length_fins = NULL,
length_mid = NULL,
justify = 0,
force_arrow = FALSE,
mid_place = 0.5,
resect = 0,
resect_head = NULL,
resect_fins = NULL,
lineend = "butt",
linejoin = "round",
linemitre = 10,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.

28 geom_arrow_segment

• A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

arrow_head, arrow_fins, arrow_mid
A function call to one of the arrow ornament functions that can determine the
shape of the arrow head, fins or middle (interior) arrows.

length, length_head, length_fins, length_mid
Determines the size of the arrow ornaments. length sets the default length,
whereas length_head, length_fins and length_mid set the lengths of the ar-
row head, arrow fins or middle arrows respectively. Can be one of the following:

• A <numeric> to set the ornament size relative to the linewidth{_*} set-
tings.

geom_arrow_segment 29

• A <unit> to control the ornament size in an absolute manner. Behaviour of
relative units such as "npc" or "null" is undefined.

justify A numeric(1) between [0-1] to control where the arrows should be drawn rel-
ative to the path’s endpoints. A value of 0 sets the arrow’s tips at the path’s end,
whereas a value of 1 sets the arrow’s base at the path’s end.

force_arrow A logical(1) which, if TRUE an arrow will be drawn even when the length
of the arrow is shorter than the arrow heads and fins. If FALSE, will drop such
arrows.

mid_place Sets the location of middle (interior) arrows, when applicable. Can be one of the
following:

A numeric vector with values between [0-1] to set middle arrows at relative
positions along the arc-length of a path.

A <unit> to fill a path with arrows with the provided unit as distance between
one arrow to the next.

resect, resect_head, resect_fins
A numeric(1) denoting millimetres or <unit> to shorten the arrow. resect_head
shortens the arrow from the arrow head side, whereas resect_fins shortens the
arrow from the fins side. Both inherit from resect.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

A <Layer> ggproto object that can be added to a plot.

Aesthetics

geom_arrow_segment() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• xend or yend

• alpha

• arrow_fins

• arrow_head

30 geom_arrow_segment

• arrow_mid

• colour

• group

• linetype

• linewidth

• linewidth_fins

• linewidth_head

• resect_fins

• resect_head

• stroke_colour

• stroke_width

The linewidth_fins and linewidth_head inherit from linewidth. They can be used to seper-
ately control the start- and end-width.

Learn more about setting these aesthetics in vignette("ggplot2-specs").

See Also

Other arrow geoms: annotate_arrow(), geom_arrow(), geom_arrow_chain(), geom_arrow_curve()

Examples

Setup dummy data
set.seed(42)
df <- data.frame(

x = LETTERS[1:6],
y = 6:1 + rnorm(6)

)

We can omit either `xend` or `yend` for this segment geom
p <- ggplot(df, aes(x, y = 0, yend = y, colour = x))
p + geom_arrow_segment()

We can set the linewidth globally
p + geom_arrow_segment(aes(linewidth = y))

Or seperately for the head and fins
p + geom_arrow_segment(aes(linewidth_head = y, linewidth_fins = 0))

We can also place arrows in the middle
p + geom_arrow_segment(

arrow_mid = arrow_head_line(), mid_place = c(0.33, 0.66),
arrow_head = NULL # Turn off head

)

grob_arrow 31

grob_arrow Arrow grob

Description

Creates a graphical object that draws arrows. An arrow typically consists of three parts: the ar-
rowhead, the shaft and fins. Relative to how an arrow is drawn from coordinates, these three parts
describe the end, middle and beginning of an arrow line.

Usage

grob_arrow(
x = unit(c(0, 1), "npc"),
y = unit(c(0, 1), "npc"),
id = NULL,
id.lengths = NULL,
arrow_head = arrow_head_wings(),
arrow_fins = NULL,
arrow_mid = NULL,
length_head = unit(5, "mm"),
length_fins = NULL,
length_mid = NULL,
justify = 0,
shaft_width = unit(1, "mm"),
mid_place = 0.5,
resect = unit(0, "mm"),
resect_fins = NULL,
resect_head = NULL,
force_arrow = FALSE,
default.units = "mm",
name = NULL,
gp = gpar(),
vp = NULL

)

Arguments

x A numeric vector or unit object specifying x-values.

y A numeric vector or unit object specifying y-values.

id A numeric vector used to separate locations in x and y into multiple lines. All
locations with the same id belong to the same line.

id.lengths A numeric vector used to separate locations in x and y into multiple lines. Spec-
ifies consecutive blocks of locations which make up separate lines.

arrow_head, arrow_fins, arrow_mid
A <matrix[n, 2]>, such as those returned by arrow ornament functions, giving
arrow shapes. The matrix can (should) have the notch_angle attribute that will

32 grob_arrow

be used to fuse the shaft to the arrow ornaments. If NULL, no ornament will be
drawn.

length_head, length_fins, length_mid
A <unit> object controlling the size of the arrow ornaments.

justify A numeric(1) between [0-1] to control where the arrows should be drawn rel-
ative to the path’s endpoints. A value of 0 sets the arrow’s tips at the path’s end,
whereas a value of 1 sets the arrow’s base at the path’s end.

shaft_width A <unit> object controlling the width of the arrow’s shaft.

mid_place Sets the location of middle (interior) arrows, when applicable. Can be one of the
following:

A numeric vector with values between [0-1] to set middle arrows at relative
positions along the arc-length of a path.

A <unit> to fill a path with arrows with the provided unit as distance between
one arrow to the next.

resect, resect_fins, resect_head
A <unit> object that can be used to create an offset between the endings of the
coordinates and where the arrow will be displayed visually. resect_fins and
resect_head control this offset at the start and end of the arrow respectively
and both default to resect.

force_arrow A logical(1) which, if TRUE an arrow will be drawn even when the length
of the arrow is shorter than the arrow heads and fins. If FALSE, will drop such
arrows.

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

vp A Grid viewport object (or NULL).

Value

A <arrow_path> graphical object.

Examples

requireNamespace("grid")

Creating an arrow
arrow <- grob_arrow(

x = unit(c(0.2, 0.5, 0.8, 0.2, 0.5, 0.8), "npc"),
y = unit(c(0.2, 0.8, 0.2, 0.8, 0.2, 0.8), "npc"),
id.lengths = c(3, 3),
arrow_head = arrow_head_wings(),
arrow_fins = arrow_fins_feather(),
length_fins = 8,
shaft_width = 1,
gp = grid::gpar(fill = c("dodgerblue", "tomato"), col = "black")

grob_arrow_curve 33

)

Drawing the arrow
grid::grid.newpage(); grid::grid.draw(arrow)

grob_arrow_curve Arrow curve grob.

Description

Creates a graphical object that draws curved arrows.

Usage

grob_arrow_curve(
x1,
y1,
x2,
y2,
default.units = "mm",
curvature = 1,
angle = 90,
ncp = 1,
shape = 0.5,
square = TRUE,
squareShape = 1,
inflect = FALSE,
open = TRUE,
name = NULL,
gp = gpar(),
vp = NULL,
...,
width_head = unit(1, "mm"),
width_fins = unit(1, "mm")

)

Arguments

x1 A numeric vector or unit object specifying the x-location of the start point.

y1 A numeric vector or unit object specifying the y-location of the start point.

x2 A numeric vector or unit object specifying the x-location of the end point.

y2 A numeric vector or unit object specifying the y-location of the end point.

default.units A string indicating the default units to use if x1, y1, x2 or y2 are only given as
numeric values.

curvature A numeric value giving the amount of curvature. Negative values produce left-
hand curves, positive values produce right-hand curves, and zero produces a
straight line.

34 grob_arrow_curve

angle A numeric value between 0 and 180, giving an amount to skew the control points
of the curve. Values less than 90 skew the curve towards the start point and
values greater than 90 skew the curve towards the end point.

ncp The number of control points used to draw the curve. More control points creates
a smoother curve.

shape A numeric vector of values between -1 and 1, which control the shape of the
curve relative to its control points. See grid.xspline for more details.

square A logical value that controls whether control points for the curve are created
city-block fashion or obliquely. When ncp is 1 and angle is 90, this is typically
TRUE, otherwise this should probably be set to FALSE (see Examples below).

squareShape A shape value to control the behaviour of the curve relative to any additional
control point that is inserted if square is TRUE.

inflect A logical value specifying whether the curve should be cut in half and inverted
(see Examples below).

open A logical value indicating whether to close the curve (connect the start and end
points).

name A character identifier.

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

vp A Grid viewport object (or NULL).

... Arguments passed on to grob_arrow

arrow_head,arrow_fins,arrow_mid A <matrix[n, 2]>, such as those re-
turned by arrow ornament functions, giving arrow shapes. The matrix can
(should) have the notch_angle attribute that will be used to fuse the shaft
to the arrow ornaments. If NULL, no ornament will be drawn.

length_head,length_fins,length_mid A <unit> object controlling the size
of the arrow ornaments.

resect,resect_fins,resect_head A <unit> object that can be used to cre-
ate an offset between the endings of the coordinates and where the arrow
will be displayed visually. resect_fins and resect_head control this off-
set at the start and end of the arrow respectively and both default to resect.

force_arrow A logical(1) which, if TRUE an arrow will be drawn even when
the length of the arrow is shorter than the arrow heads and fins. If FALSE,
will drop such arrows.

justify A numeric(1) between [0-1] to control where the arrows should be
drawn relative to the path’s endpoints. A value of 0 sets the arrow’s tips at
the path’s end, whereas a value of 1 sets the arrow’s base at the path’s end.

mid_place Sets the location of middle (interior) arrows, when applicable. Can
be one of the following:
A numeric vector with values between [0-1] to set middle arrows at rela-

tive positions along the arc-length of a path.
A <unit> to fill a path with arrows with the provided unit as distance be-

tween one arrow to the next.
x A numeric vector or unit object specifying x-values.

scale_resect 35

y A numeric vector or unit object specifying y-values.
id A numeric vector used to separate locations in x and y into multiple lines.

All locations with the same id belong to the same line.
id.lengths A numeric vector used to separate locations in x and y into multi-

ple lines. Specifies consecutive blocks of locations which make up separate
lines.

width_fins, width_head
A <unit> object controlling the width of the arrow’s shaft at the (x1, y1) and
(x2, y2) location respectively.

Value

A <curve_arrow> graphical object.

Examples

requireNamespace("grid")

Creating the curved arrow
grob <- grob_arrow_curve(

x1 = unit(0.25, "npc"), y1 = unit(0.25, "npc"),
x2 = unit(0.75, "npc"), y2 = unit(0.75, "npc"),
angle = 90, curvature = 0.5, ncp = 5,
arrow_head = arrow_head_line()

)

Drawing the arrow
grid::grid.newpage(); grid::grid.draw(grob)

scale_resect Scale for resection

Description

Arrow geoms have a resect aesthetic that controls how much an arrow should be shortened. These
scales can help to rescale the output range of resection.

Usage

scale_resect_continuous(
...,
range = NULL,
aesthetics = c("resect_head", "resect_fins"),
guide = "none"

)

scale_resect_discrete(
...,

36 scale_resect

values = NULL,
aesthetics = c("resect_head", "resect_fins"),
range = NULL,
guide = "none"

)

Arguments

... Arguments passed on to ggplot2::continuous_scale, ggplot2::discrete_scale

name The name of the scale. Used as the axis or legend title. If waiver(), the
default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.

breaks One of:
• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output

(e.g., a function returned by scales::extended_breaks()). Note that
for position scales, limits are provided after scale expansion. Also ac-
cepts rlang lambda function notation.

minor_breaks One of:
• NULL for no minor breaks
• waiver() for the default breaks (one minor break between each major

break)
• A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also

accepts rlang lambda function notation. When the function has two
arguments, it will be given the limits and major breaks.

n.breaks An integer guiding the number of major breaks. The algorithm may
choose a slightly different number to ensure nice break labels. Will only
have an effect if breaks = waiver(). Use NULL to use the default number
of breaks given by the transformation.

labels One of:
• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum

scale_resect 37

• A function that accepts the existing (automatic) limits and returns new
limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If
the purpose is to zoom, use the limit argument in the coordinate system
(see coord_cartesian()).

rescaler A function used to scale the input values to the range [0, 1]. This is
always scales::rescale(), except for diverging and n colour gradients
(i.e., scale_colour_gradient2(), scale_colour_gradientn()). The
rescaler is ignored by position scales, which always use scales::rescale().
Also accepts rlang lambda function notation.

oob One of:
• Function that handles limits outside of the scale limits (out of bounds).

Also accepts rlang lambda function notation.
• The default (scales::censor()) replaces out of bounds values with
NA.

• scales::squish() for squishing out of bounds values into range.
• scales::squish_infinite() for squishing infinite values into range.

expand For position scales, a vector of range expansion constants used to add
some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

na.value Missing values will be replaced with this value.
transform For continuous scales, the name of a transformation object or the

object itself. Built-in transformations include "asn", "atanh", "boxcox",
"date", "exp", "hms", "identity", "log", "log10", "log1p", "log2", "logit",
"modulus", "probability", "probit", "pseudo_log", "reciprocal", "reverse",
"sqrt" and "time".
A transformation object bundles together a transform, its inverse, and meth-
ods for generating breaks and labels. Transformation objects are defined
in the scales package, and are called transform_<name>. If transforma-
tions require arguments, you can call them from the scales package, e.g.
scales::transform_boxcox(p = 2). You can create your own transfor-
mation with scales::new_transform().

trans [Deprecated] Deprecated in favour of transform.
position For position scales, The position of the axis. left or right for y

axes, top or bottom for x axes.
call The call used to construct the scale for reporting messages.
na.translate Unlike continuous scales, discrete scales can easily show miss-

ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

drop Should unused factor levels be omitted from the scale? The default, TRUE,
uses the levels that appear in the data; FALSE includes the levels in the
factor. Please note that to display every level in a legend, the layer should
use show.legend = TRUE.

38 scale_resect

range A numeric vector of length 2 indicating the minimum and maximum size of the
resection after transformation in millimetres. range is mutually exclusive with
the values argument in discrete scales.

aesthetics The names of the aesthetics that this scale works with.

guide A function used to create a guide or its name. See guides() for more informa-
tion.

values (Discrete scale only) A numeric vector to map data values to. The values will be
matched in order with the limits of the scale, or with breaks if provided. If this
is a named vector, the values will be matched based on the names instead. Data
values that don’t match will be given na.value. values is mutually exclusive
with the range

Details

Conceptually, these scales depart slightly from ggplot2 conventions. The scale_resect_continuous()
function returns an identity scale when range = NULL (default) and a typical continuous scale when
the range argument is set. The scale_resect_discrete() acts as a manual scale when values is
set and as an ordinal scale when range is set.

Value

A <Scale> that can be added to a plot.

Examples

A plot with points indicating path ends
p <- ggplot(whirlpool(5), aes(x, y, colour = group)) +

geom_point(data = ~ subset(.x, arc == ave(arc, group, FUN = max)))

Resect scale as an identity scale
p + geom_arrow(aes(resect_head = as.integer(group))) +

scale_resect_continuous()

Resect scale as typical continuous scale
p + geom_arrow(aes(resect_head = as.integer(group))) +

scale_resect_continuous(range = c(0, 10))

Resect scale as manual scale
p + geom_arrow(aes(resect_head = group)) +

scale_resect_discrete(values = c(10, 5, 0, 5, 10))

Resect scale as ordinal scale
p + geom_arrow(aes(resect_head = group)) +

scale_resect_discrete(range = c(0, 10))

whirlpool 39

whirlpool Whirlpool data

Description

This function returns some made-up data to test arrow functionality with.

Usage

whirlpool(n = 5, detail = 100)

Arguments

n The number of streams in the whirlpool.

detail The number of points per stream.

Value

A data.frame

Examples

whirlpool()

Index

∗ arrow geoms
annotate_arrow, 2
geom_arrow, 14
geom_arrow_chain, 18
geom_arrow_curve, 22
geom_arrow_segment, 26

∗ datasets
GeomArrow, 14

<unit>, 12, 13, 16, 20, 25, 29, 32, 34, 35

aes(), 15, 19, 23, 27
alpha, 17, 21, 25, 29
annotate(), 2
annotate_arrow, 2, 17, 21, 26, 30
arrow ornament, 16, 20, 24, 28, 31, 34
arrow_cup (arrow_ornaments), 4
arrow_fins_feather (arrow_ornaments), 4
arrow_fins_line (arrow_ornaments), 4
arrow_fins_minimal (arrow_ornaments), 4
arrow_head_line (arrow_ornaments), 4
arrow_head_minimal (arrow_ornaments), 4
arrow_head_wings (arrow_ornaments), 4
arrow_ornaments, 4

borders(), 17, 21, 25, 29

colour, 17, 21, 26, 30
continuous_arrow_scales, 5
coord_cartesian(), 7, 37

discrete_arrow_scales, 8
draw_key_arrow, 10

element_arrow, 11
element_line(), 11
expansion(), 9, 37

fortify(), 15, 19, 23, 27

geom_arrow, 3, 14, 21, 26, 30
geom_arrow_chain, 3, 17, 18, 26, 30

geom_arrow_curve, 3, 17, 21, 22, 30
geom_arrow_segment, 3, 17, 21, 26, 26
GeomArrow, 14
GeomArrowChain (GeomArrow), 14
GeomArrowCurve (GeomArrow), 14
GeomArrowSegment (GeomArrow), 14
ggarrow_extensions (GeomArrow), 14
ggplot(), 15, 19, 23, 27
ggplot2::continuous_scale, 36
ggplot2::discrete_scale, 9, 36
ggproto, 14
gpar, 32, 34
graphical object, 32, 35
grob_arrow, 31, 34
grob_arrow_curve, 33
group, 17, 21, 26, 30
guides(), 7, 10, 38

key glyphs, 3, 16, 20, 24, 28

lambda, 6, 7, 9, 36, 37
layer position, 15, 19, 24, 28
layer stat, 15, 19, 23, 28
layer(), 2, 3, 15, 16, 19, 20, 24, 28
legend key glyphs, 10
linetype, 17, 21, 26, 30
linewidth, 17, 21, 26, 30

ornament constructors, 12
ornament shapes, 12
ornamentation, 7

scale_arrow_fins_continuous
(continuous_arrow_scales), 5

scale_arrow_fins_discrete
(discrete_arrow_scales), 8

scale_arrow_head_continuous
(continuous_arrow_scales), 5

scale_arrow_head_discrete
(discrete_arrow_scales), 8

40

INDEX 41

scale_arrow_mid_continuous
(continuous_arrow_scales), 5

scale_arrow_mid_discrete
(discrete_arrow_scales), 8

scale_colour_gradient2(), 37
scale_colour_gradientn(), 37
scale_resect, 35
scale_resect_continuous (scale_resect),

35
scale_resect_discrete (scale_resect), 35
scales::censor(), 37
scales::extended_breaks(), 6, 36
scales::new_transform(), 7, 37
scales::pal_hue(), 9
scales::rescale(), 37
scales::squish(), 37
scales::squish_infinite(), 37

theme, 11
theme(), 13
transformation object, 6, 36

unit, 16, 20, 25, 29, 32, 34

whirlpool, 39

x, 17, 21, 25, 29
xend, 21, 29

y, 17, 21, 25, 29
yend, 21, 29

	annotate_arrow
	arrow_ornaments
	continuous_arrow_scales
	discrete_arrow_scales
	draw_key_arrow
	element_arrow
	GeomArrow
	geom_arrow
	geom_arrow_chain
	geom_arrow_curve
	geom_arrow_segment
	grob_arrow
	grob_arrow_curve
	scale_resect
	whirlpool
	Index

